Is CFTR-delF508 Really Absent from the Apical Membrane of the Airway Epithelium?

نویسندگان

  • Lee A. Borthwick
  • Phil Botha
  • Bernard Verdon
  • Malcolm J. Brodlie
  • Aaron Gardner
  • David Bourn
  • Gail E. Johnson
  • Mike A. Gray
  • Andrew J. Fisher
چکیده

BACKGROUND Understanding where mutant CFTR is localised in airway epithelia is essential in guiding the best therapeutic approach to correct the dysfunction of the CFTR protein. The widely held paradigm is that CF patients harbouring the commonest mutation, CFTR-delF508, trap CFTR within the endoplasmic reticulum and target it for degradation. However there are conflicting reports concerning expression and localisation of CFTR-delF508 in lung tissue. To attempt to resolve this fundamental issue we developed a novel approach to measure CFTR-delF508 in the lower airways of patients who have undergone lung transplantation for advanced CF. By sampling CF and non-CF epithelium simultaneously from the same individual, confounding factors of different airway microenvironments which may have influenced previous observations can be overcome. METHODS Epithelia sampled by bronchial brushing above (CF) and below (non-CF) the bronchial anastomosis were stained for CFTR and the localisation and level of expression assessed (n = 12). RESULTS There was no significant difference in the proportion of tall columnar cells showing CFTR immunostaining as a discrete band at the apical membrane in cells harbouring the CFTR-delF508 mutation compared to non-CF cells (p = 0.21, n = 12). However, the amount of CFTR expressed at the apical surface was reduced by ∼50% in CF cells compared to non-CF cells (p = 0.04, n = 5). CONCLUSIONS Our novel observation challenges the prevailing paradigm that CFTR is essentially absent from the apical membrane of respiratory cells harbouring the CFTR-delF508 mutation. Moreover, it raises the possibility that the new generation of CFTR potentiators may offer a realistic therapeutic option for CF patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paracellular permeability of bronchial epithelium is controlled by CFTR.

In normal airway epithelium, the cystic fibrosis transmembrane conductance regulator (CFTR) transports Cl(-) ions to the apical surface of the epithelium paralleled by the flow of water through transcellular and paracellular pathways. The hypothesis was tested whether CFTR not only regulates the transcellular but also the paracellular shunt pathway. Therefore, we performed measurements of trans...

متن کامل

cAMP-dependent absorption of chloride across airway epithelium.

Elevated levels of Na and Cl in airway surface liquid may play a major role in the airway pathology of cystic fibrosis (CF) (J. J. Smith, S. M. Travis, E. P. Greenberg, and M. J. Welsh. Cell85: 229-236, 1996) and could be caused by block of transcellular Cl absorption due to lack of a functional CF transmembrane conductance regulator (CFTR). To test for transcellular absorption of Cl across non...

متن کامل

Cigarette smoke and calcium conspire to impair CFTR function in airway epithelia

To maintain health and function in response to inhaled environmental irritants and toxins, the lungs and airways depend upon an innate defense system that involves the secretion of mucus (i.e., mucin, salts, and water) by airway epithelium onto the apical surface to trap foreign particles. Airway mucus is then transported in an oral direction via ciliary beating and coughing, which helps to kee...

متن کامل

Emerging relationship between CFTR, actin and tight junction organization in cystic fibrosis airway epithelium.

Cystic fibrosis (CF), one of the most common genetic disorders affecting primarily Caucasians, is due to mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, encoding for a chloride channel also acting as regulator of other transmembrane proteins. In healthy subjects, CFTR is maintained in its correct apical plasma membrane location via the formation of a multiprotein complex in...

متن کامل

Local regulation of cystic fibrosis transmembrane regulator and epithelial sodium channel in airway epithelium.

Regulation of cystic fibrosis transmembrane regulator (CFTR) and epithelial sodium channel (ENaC) in airway epithelia strongly influences the rate of mucociliary clearance (MCC) by determining the volume of airway surface liquid. MCC increases in response to stimuli originating on the airway surface, and CFTR and ENaC in airway epithelia appear to be regulated by local rather than systemic sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011